微藻光合产氢

微藻产氢

氢能源具有高发热量、高能量转化率和不含碳源燃烧后产物对环境无污染等优点,成为代替化石燃料的首要选择。目前世界上的制氢方式主要有:碳氢燃料(如煤、石油等)的气化、甲烷蒸汽重整、电解水制氢等,这些制氢方法不是将化石燃料转化为氢能,就是消耗大量电能来实现转化,不利于节能减排。

芬兰图尔库大学于2018年03月发表在“Energy &Environmental Science”杂志上的论文公布绿藻在无氧环境下,通过脉冲光照射,可以达到8小时高效产氢,产氢速率为3mmol/L。其实在微藻界,科学家利用微藻进行发酵来产氢已经不是什么新鲜事了,那么到底微藻是怎么产生氢气的呢?

首先应该从绿藻光合作用说起。在正常光合作用下,绿藻的叶绿体吸收太阳光从而获得能量,将水光解为氢离子、电子和氧气,通过藻细胞组织将电子不间断地传递给辅酶NADP,这样辅酶NADP就成为了氢离子的载体,一个分子的辅酶NADP可携带两个氢离子,变成NADPH充当还原剂。NADPH与ATP共同作用,把水溶液里的二氧化碳转换成葡萄糖,这个反应学术上叫卡尔文循环反应。

当我们需要绿藻产氢时,绿藻的叶绿体吸收太阳光从而获得能量,将水光解为氢离子、电子和氧气,通过藻细胞组织将电子不间断地传递给辅酶NADP,这样辅酶NADP就成为了氢离子的载体,NADPH里面的氢离子和电子依次经过质体醌、细胞色素、质体蓝素的传递,最终被传递到光合作用系统Ⅰ(PSⅠ)的铁氧还原蛋白上。铁氧还原蛋白在厌氧条件下诱导出[FeFe]氢化酶活性,从而使氢离子在[FeFe]氢化酶上吸收电子产生氢气。如下图红线路径所示。

因此微藻产氢的条件和效率是与氢离子、电子、氢化酶的数量和在厌氧环境的情况下激活氢化酶,并把氢离子和电子传递到氢化酶路径上去有关。在具体实践上微藻产氢与藻种、培养基的配方、厌氧环境建立以及光照方式,都有着极大的关系。

沐耕山(上海)生物能源科技有限公司在去年已经开始进行绿藻产氢实验,在藻种的筛选、培养基的优化、厌氧环境建立方式和光胁迫条件取得了突破,出气率高达32mmol/L,其中氢气的比率达80%,并完成了工业化生产工艺的准备工作。目前正在寻求融资建设中试基地,为大规模生产、复制做准备。

生物制氢除了对环境排碳有帮助以外,它还是一种可再生的能源。并且它可以在任何地方进行生产,避免了氢气的长途运输。沐耕山(上海)生物能源科技有限公司的生产工艺可以进行大规模的生产,生产过程高度自动化,并没有任何的排放物对环境造成影响。氢气生产后所剩余的生物质可以再次利用为高效的植物蛋白原材料,可用于食品添加剂和鱼饲料。这使得整个的氢能源产业链完全绿色化。

本文转自微信公众号微藻博士https://mp.weixin.qq.com/s/0pvGkZUpeOon8dj5RK4nhg

Related Posts

Read More

光语为您介绍——如何用好硅藻,养出高蛋白鱼虾蟹

本文聚焦硅藻在鱼虾蟹养殖场中的重要作用及助力鱼虾蟹优质生长的方法。指出硅藻虽微小却能量巨大,是单细胞藻类,广泛分布于淡水和海水中。其为幼体鱼虾蟹提供富含营养的天然饵料,助其发育并提高存活率;能改善水质,增加溶氧,吸收氮磷,维持水体平衡与清澈;还可稳定养殖环境生态系统,调节其他生物数量与分布。为让鱼虾蟹长得更好、富含更多蛋白质,要合理调控养殖环境,包括适宜的水体条件与适度的养殖密度;科学管理饵料,监测硅藻状况调整投喂策略;加强水质监测和调控,采取换水、添加制剂等措施;引入有益微生物与硅藻协同作用,增强鱼虾蟹免疫力和消化功能。总之,科学利用硅藻优势能创造优越生长条件,带来经济效益,推动水产养殖可持续发展,未来其应用潜力有望进一步拓展。…

Read More

光语为您介绍——衣藻

摘要:本文主要介绍了名为衣藻的单细胞生物。首先描述其生物形态,如呈卵形或球形,直径约 5 - 10 微米,具有细胞壁等结构,细胞质含大型杯状叶绿体,前端有两根鞭毛。接着阐述其多样的繁殖方式,包括无性生殖和有性生殖,这使其能在不同环境迅速繁衍并保持种群稳定。衣藻是生态系统中的初级生产者,影响水体生态平衡,适宜环境中可改善水质,环境变化时可能导致水华。在科学研究中,因其单细胞、结构简单、生长周期短、易培养,成为研究细胞生物学等的理想模式生物。在生物技术领域,衣藻在生物制氧、生物燃料开发和环境监测等方面有广阔应用前景。总之,衣藻虽小却重要,未来对其研究有望带来更多成果,我们应重视对其的探索。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Write a comment